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LETTER TO THE EDITOR 

Are all quantum measurements reducible t o  local position 
m-paSlXerr?e&? 
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t Department of Physics and Astronomy, University of St Andrews, St Andrews, Fife 
KY16 9SS, UK 
t Department of Mathematics, City University, Northampton Square, London EClV 
WE, UK 

Received 4 February 1991 

Abstract. A typical quantum measurement process involves two steps. Step one 
is to separate the initial wavefunction into its spatial components which are then 
guided towards detectors at  different locations. The second step involves the direct 
detection of the particle by a detector. Such a messurement process presupposes the 
existence of an interaction which can produce step one. This letter gives a general 
mathematical formulation of the first step and establishes the existence of a unitary 
evolution group which produces the separation. The results obtained support the 
view that quantum measurements are reducible to local position measurements. 

It is folklore that all quantum measurements are reducible to position measurements; 
indeed it is hard to imagine otherwise. A typical example is the Stern-Gerlach setup 
for a spin measurement. I t  is from the direct detection of the particle in a particular 
location that one claims to have measured the spin; one does not measure the spin di- 
rectly [l, chapter 41. Another example is measurement of the momentum of a charged 
particle by its deflection in a magnetic field. Measurements of this kind can he con- 
sidered to consist of two steps (21. Step one is t o  separate the initial wavefunction into 
its spectral components which are then guided towards detectors a t  various locations. 
This step is accomplished by a unitary evolution generated by a n  appropriate interac- 
tion without any wavepacket reduction. The second step involves the direct detection 
of the particle by one of the detectors. A detector is a device which can ascertain 
the arrival or non-arrival of a particle a t  a location where the detector is situated. 
A detector is therefore a position measuring device. The obvious conclusion which 
can be drawn from this analysis is that the measurement is executed by a position 
measurement. In this letter we aim to give a general and rigorous formulation of such 
a measurement process. 

This paragraph summarizes our notation. We shall denote by E, and Ep the 
position and momentum spectral measures of the Hilbert space L2(W"). These are 
defined for any Bore1 set A of Rc by 

E,(A)rp = xarp Vrp E L2(R")  Ep(A) = F-'E,,(A)F 

where x,, is the characteristic function of the set A and F is the Fourier transform 
operator on L.'(W") [3]. By an evolution group we shall mean a strongly continuous 
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group homomorphism from R into the group of all unitary operators on Lz(R"). We 
denote by Ci0 the free-particle evolution group defined by 

= exp (-itH,/h) 

where Ho is the self-adjoint operator representing the freeparticle Hamiltonian, i.e. 

The range of an operator P will be denoted by ranP. In particular if P is a projection 
operator then r a n P  is the subspace onto which P projects. 

We now discuss the spatial separation of the wavefunction. Consider a quantum 
particle of mass m in three-dimensional motion described by the Hilbert space Lz(R3). 
lo begin iet us consider a proposition oi the particie represented by a projection 
operator P;  such a proposition takes the values 0 or 1 and is measurable by a yes-no 
experiment. Our object is to obtain the expectation value (a I P@) of the observable 
P of a particle in the state G by local position measurements. Let M be the subspace 
associated with P and let M I  denote the orthogonal complement of M .  We then 
have the decomposition 

a = @ + *  

c 

for some q4 E M and some $ E M I ,  giving 

(a I = (q4 14) 

Let us define precisely what is meant by step one for the separation of the wave- 
function. The intuitive idea is to introduce a unitary evolution generated by some 
interaction Hamiltonian H which makes q4 and 1/, evolve into states in two spatially 
disjoint.regions A and A.  Let U be such an evolution group and for each 'p E L*(R3) 
let vl denote Ul'p. Then we have 

Generally the idea of separation has to be an asymptotic one since a Schrodinger- 
type of evolution with a positive Hamiltonian generally leads to a spreading of the 
wavepacket [4]. We shall call and $, asymptotically separating [5 ,6 ]  if there are 
disjoint regions A and A in the configuration space R3 for which 

Physically this means that a t  all sufficiently large times t the components d1 and 
1/,, will separate and concentrate in the respective regions tA = { t z  I z E A }  and 
IA = { tz 1 z E A ) ,  with vanishing overlap. 

This is similar to the known asymptotic separation, under the free evolution group, 
of two wavefunctions having disjoint momentum ranges-a result which we state more 
precisely in the following way (see 15-71), 
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For any Borel set A of R" and any 4 E LZ(R") Theorem 1. 

1-m lim IIE,(tA)u~dll = IIEp(mA)411. 

Let us call the unitary evolution given by U a spatial separation of the state 0 
according to  the spectrum of the observable P. We now regard this as the definition of 
the intuitive idea of wavefnnction separation involved in step one of the measurement 
of P .  

The question now is whether such a step one is always realizable, i.e. whether 
there exists an  evolution group U which satisfies requirements (1). The answer is yes, 
as we see from the following theorem. 

Theomm 2. Let {q41,. . . , d , }  be a finite ortbonormal set in L2(1w") and let 
{A,, . . . , Ak] be a set of pairwise disjoint Borel sets, each having non-zero Lebesgue 
measure. Then there is an evolution group U on Lz(R") with the following properties. 

(ii) the wave operator R+ defined by R, = s- lim,-m U;Up exists and is unitary. 
(iii) Every element of Lz(R") is a scattering state of U. 

(i) Iim,-.- IIEz(tAr)Ut+,Il = 1 V r  E { l , .  . . ,  k l .  

PrmJ There is no loss of generality in assuming that the sets Al ,  . . . , A ,  cover R" 
(for if not, take Ak+l = R" - Ut=,A, and add a suitable vector 

, . , dk} to an  orthonormal basis {d1,. . . , d K }  ofthe subspace spanned 
by the set {Ep(mA,)+, I 1 < r,.s 5 k}. For each P let { djk+K+r I j = 0 , 1 , 2 , .  ..} be 
an orthonormal basis for the subspace 

Extend 

{ Ep(mA,)4, I 1 I s I k l l  n ranEp(mA,) 

In this way we extend the original set of k vectors to  an orthonormal basis { di I 
i E N) of Lz(Iw") with the property that there exists h' 2 k with 

Ep(mAr)bK+r = d ~ + ~  1 I P 5 k (2) 

E,(mA,)di E { 0 , d i l  i 2 I<. (3) 

and 

We now map the original set of k vectors to a new set whose elements correspond 
to  disjoint momentum ranges and therefore separate asymptotically under the free 
evolution. 

Let F be the bounded linear operator defined by 

= dK+r I < r < k  

F d K + v  = d r  I < r < k  
Fd, = 4, k < r < I i  

Fd, = 0 K + k < r  

and let G be the projection onto the subspace { Qi I 1 5 i 5 K + k }'. Define W to be 
the operator F + G .  Then W is unitary ([3, p 2151) and W z  = I, so W is self-adjoint. 
We may now define an evolution group U by 

u,=wupw Vt E l  



L428 Letter to the Editor 

Let r E { 1,. . . , k} then 

Observe that if i > K and Ep(mA,)'+i # 0 then by (2), (3) and the fact that 
EF(mAr)' commutes with Up, we have 

(4i 1 U P d K + r )  = (Ep(mAr)'4i I li:4K+r) 

= (di I @ E p ( 4 ) L + K t r )  

= 0. 

Hence 

K + k  

EP(mA,)'U,4, = c ( d ,  1 @4Ktr)EF(mAP)'F+i 
i =1  

so 

K + k  

1 - 0 0  lim I I E ~ ( ~ A J ~ U ~ + ~ I I  5 E ~iz  I u p # K + , )  I= 0 
i= l  

since every element of Lz(R") is a scattering state of Up (8, p 1251. It follows that 

lim ] ~ E p ( m A ~ ) U l # T ~ ~ =  1 V r € { l ,  ..., k ] .  (4) 
t-00 

We shall now prove parts (ii) and (iii) of the theorem and then use them together 

Let H = WH,W so that 
with (4) to obtain part (i). 

- H  - H .  r i i  - H m r r r  -Hn e -- - e  ~~" = "ye --"y" - e  ~ ~ " ,  

Since W 4  = 4 for any 4 E ranG a simple calculation gives 

(e-" - e-HO)G = ( F  - G')e-HOG 

and this implies 

e-H - e-Ho = ( e - H  - e-Ho))GL + ( F  - G')e-"OG 

Since F and G' are finite-rank operators it follows that e-H -e-"@ is a finite-rank 
operator 19, p 65); it therefore belongs to the trace class [lo, p 2091, and this implies 
that the wave operator R+ exists and is complete [ll, corollary 4 ,  p 311, i.e. the 
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range of R, is equal to the set of all scattering states of H and also to the absolutely 
continuous subspace of H .  Since H and H, are unitarily equivalent, and the spectrum 
of H is absolutely continuous [12, p 5931, we have ranR, = LZ(R"). It also follows 
that 0, is unitary [8, proposition 5.121. 

Now for each r E { 1,. . . , k] we have 

1 = 1-m lim IIEp(mA7)~14,11 

= 1-m lim IIEp(mA,)U~*~14,11 

= 1-m lim llEz(tA,)U~fi:4rll 

= II'qmA,P;4,ll 

by theorem 1, but 

lim llEz(tA,)Ut4r - EZ(tA,)u$:4J I lim Ild7 - U;u:Q;4,ll 
I-m 1-m 

= 1147 - "+";+711 
= o  

so 

We now discuss local position measurement. The position spectral projection 
E,(A) corresponds to the proposition 'the measured value of position is in the region 
A' [13], which is a proposition measurable by a detector covering the region A. We 
shall call E,(A) a local position observable. 

Let us  return to the problem of the measurement of the projection P in the state 4.  
The theorem above ensures the existence of two disjoint spatial regions A and A,  and 
an evolution group U such that the conditions ( 1 )  are satisfied. From the expansion 

(ai I Ez(tA)@t) = (4t I E,(tA)+t) + ( $ 1  I E=(tA)$t) + (41 I Ei(tAMt) 
+ ( $ 1  I E,(tA)41) 

we deduce that 

I-m lim (al I E,(tA)@,) = ,lifnm(+, I W A ) 4 , )  = 114112. 

We conclude that the expectation value 

(a I p a )  = (4 14) = ll4ll2 
of P in the state can indeed now be obtained with arbitrary accuracy by a mea- 
surement of the local position observable E,(TA) in the evolved state aT after a 
sufficiently large time interval T. In fact we can break up the region TA into a 
number of smaller regions(TA)j and employ smaller detectors to obtain the desired 
expectation value since 
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Since an arbitrary observable can be described as a proposition-valued measure 
and all measurements are reducible to a set of yes-no experiments [13] the fact that 
the measurement of propositions can be reduced to local position measurements es- 
tablishes the principle we set out t o  seek. We can carry out a quantum measurement 
like a typical scattering experiment. We first carry out a spatial separation of the state 
according t o  the spectrum of the observable; the particle is then detected by an array 
of detectors at appropriate locations and the expectation values can be computed from 
the data recorded. 

Further work is in progress t o  develop a more complete analysis of the problem 
posed by the present letter. 
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